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Overall Structure of CeC Prediction
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Outline
• Prediction of cooling force in a single pass 

– FEL-based CeC system
o Theoretical model
o Simulations

– PCA-based CeC system
o Theoretical model
o Simulations
o Preliminary estimates of cooling eRHIC proton beam (275 GeV) with PCA-based 

CeC
– Chicane-based CeC system (time-domain analysis)

• Prediction of hadron beam evolution in the presence of 
cooling
– Analytical approach: solving 1-D Fokker-Planck equation
– Macro-particle tracking

• Transverse cooling
• Summary



FEL-based CeC

The economical version is made possible by:
1. Use relatively weak undulator field to reduce 
the delay of electrons;
2.Wave-packet moves faster than electrons.



Parameters for the CeC PoP experiment

Electron beam parameters* (γ=28.6)

Peak current* 40 A

Bunch length, (full length with 
uniform profile) 

25~30 ps

RMS emittance, normalized 3~5 μm

RMS beam width at 
modulator/kicker

700 μm

RMS beam width at FEL
amplifier

235 μm

RMS energy spread 1e-3

System parameters*
Length of modulator/kicker 3 m

Undulator period 4 cm
Total number of undulator period
(3 sections)

188

Undulator parameter, aw 0.5
FEL optical wavelength 30.5 μm

Pierce parameter, ρ 0.012

* The designed peak current was changed to 75A to compensate FEL 
gain reduction due to longitudinal space charge



Analytical Tools for the Modulation Process I
• Cold uniform electron beam (© V.N. Litvinenko)

– Density modulation: 

– Energy modulation (                ):

• Warm uniform electron beam with k-2 velocity distribution

– Density modulation: 
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Analytical Tools for the Modulation Process II
– Energy modulation: 

where                is an 1-D integral with finite integration limits 
(see backup slides).
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Validating Numerical Simulations with Theoretical Prediction
• Simulations based on perturbative trajectory approach (© J. Ma, with 

code SPACE)
– Benchmarked with theory for uniform warm beam

• Gaussian beam in continuous focusing channel

*SPACE is a PIC code, X. Wang et al., “Adaptive Particle-in-Cloud method for optimal solutions to 
Vlasov-Poisson equation,” J. Comput. Phys., 316 (2016), 682 - 699. 



3D Modulator simulation in Quadrupole Focusing Channel
© J. Ma, SPACE simulation



• For the CeC PoP parameters, the FEL amplifier works in the diffraction dominated 
regime

and hence we can’t rely on 1-D theory to predict the performance of the  amplifier.

• Using Ming Xie’s empirical formula, we obtain

• Estimate of the maximal gain before FEL saturation

Analytical Prediction for FEL Amplifier
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Effects due to multi-subsections
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Only 17% of the radiation power 
propagates to the next subsection

• Our undulator consists of 3 sub-sections 
and more than 80% of radiation power is 
lost in the 44cm gap between two 
successive subsections.

Rayleigh length 

The radiation width



Effects due to Longitudinal Space Charge

Peak current: 75 A
Emittance: 8 umIon

• Longitudinal space charge has more pronounced effects on the FEL gain than 
what to be expected from theory.

Peak current: 51 A



• Dynamic equation in Kicker is very similar to that in the modulator 
except the initial modulation in 6D phase space dominates the 
process. For 1D FEL output with the certain assumptions for the 
transverse distribution, the following analytical formula for density 
modulation can be derived (IPAC’10 proceedings, pp. 873)
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• The macro-particles from GENESIS simulation are imported into 
SPACE for the kicker simulation © J. Ma, SPACE simulation



Field Reduction due to Finite Transverse Size

*The results reproduces what previously derived by G. Stupakov.
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To estimate the reduction of electric field due 
to finite transverse size, we solve Poisson 
equation for charge distribution of the form:

and get the on-axis longitudinal electric field

For Gaussian transverse density distribution,  
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Start-to-end Simulations of Cooling Section

© J. Ma, SPACE simulation



Applying Single-pass Kick to Predict Ion Beam 
Evolution with Cooling

1. Macro-particle tracking
2. Solving Fockker-Planck 

equation

40 minutes 
of cooling



PCA-based CeC
• Plasma-Cascade Instability

– Longitudinal plasma oscillation
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Longitudinal plasma oscillation in a neutral 
plasma (from the internet, only for illustration)

Plasma oscillation also exist in 
single-species plasma like 
electron beam.



Plasma-Cascade Instability
Betatron motion in a FODO cellLongitudinal plasma oscillation with 

periodically varying plasma frequency
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If we assume                    , the envelope equation become                        
and its solution for initial condition of                and                  is

and the equation of longitudinal density perturbation becomes

which can be solved in terms of Hypergeometric function:

The eigenvalues for the transfer matrix of one cell is

Analytical solution for emittance dominated beam
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Gain of Plasma-Cascade Instability



Estimate Cooling Force for PCA-based CeC: Parameters 

Energy, γ 28.5

Electron beam peak current, A 100

Bunch length, ns 0.015

Bunch charge, nC 1.5

Modulator length, m 3

Amplifier length, m 8 (4 sections)

Beam width at modulator, mm 0.94

Amplifier gain (Cold, infinitely wide), 
𝑔"#$

200

RMS energy spread 1e-4

KV envelope norm. emittance, μm 8

Minimal beam width at PCA, mm 0.2

3.6sck = 7kb =

4.5l »
41 200

2ampg lº »



Estimate Cooling Force for PCA-based CeC: 
Line density perturbation

Line density perturbation at the exit of the modulator:
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Estimate Cooling Force for PCA-based CeC: 
Line density perturbation

Line density perturbation in wave-
number domain

Line density perturbation in spatial 
domain
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Estimate Cooling Force for PCA-based CeC: 
Longitudinal Electric Field in the Kicker Section
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The electric potential induced by the line density perturbation is determined by the 
following equations

If we take the transverse distribution of 
the electrons as

The electric field can be solved as

For easy implementation into ion tracking code, we use the fitting formula:
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Single-pass Kick and Tracking Results for PCA-
based CeC
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Parameters used in ion tracking
E0

* 62 V/m
σc 3.75 μm
Zion 79
Ion bunch intensity 2E8
D (R56) 1.2 cm

*E0 is reduced by a factor of 2 to account for reduced 
cooling for ions with large betatron amplitude



Tolerance of PCA-based CeC on the noise of electron 
beam
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Actual noise power in the electron beam
Shot noise power for uncorrelated electronsNLR =

• According to the simulation, the
noise power in the electron
beam should not exceed 200
times of the shot noise power.



3D Simulation of PCA



3D simulation of PCA



Preliminary Estimates for eRHIC

( )
3/22

0 21fit
c c

z zE z E
s s

-
æ ö

= × +ç ÷
è ø

In Beam frame

In lab frame

Electron beam parameters
Energy, γ 293.1
Bunch length, ps 50
Bunch charge, nC 12.5
RMS energy spread 1e-4
Beam width at modulator 
and kicker, mm

0.6

Minimal beam width at 
PCA, mm

0.1

Other parameters
Modulator length, m 40
PCA length, m 80
Kicker length, m 20
PCA gain 100



Preliminary Estimate for eRHIC
Ion beam parameters

Energy, γ 293.1

RMS bunch length, ps 160

Bunch intensity 6E10

RMS energy spread 4.6e-4

R56 from modulator to 
kicker (drift), mm

0.93

1.5 hours of cooling

Local cooling time for ions with small 
synchrotron oscillation amplitude

min 66.5rev peak p
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T E
s

eE L
s

t = =

0.48 /peakE V m=

0.17peakz mµ=

4

56

1.8 10peak
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z
R
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R56 of ions is about a factor of 3 larger than the 
ideal value (0.3 mm) and consequently ions with 
large energy deviation are not cooled efficiently. 
One possible way to increase the cooling range 
is ‘electron painting’. 



3D Simulation of PCA Gain for eRHIC Set-up
© J. Ma



PCA with dedicated central Solenoids

We also work on PCA schemes with 
dedicated central solenoids, which may 
relax the requirements on peak current 
and emittance of the electron beam.



Chicane-based CeC

Enhanced bunching: single stage – VL, FEL2007

Micro-bunching: MB Amplifier, Single & Multi-stage, D. Ratner, PRL, 2013

Cooling rate for microbunched electron cooling without amplification, G. 
Stupakov, PRAB, 2018

Microbunched electron cooling with amplification cascade, G. Stupakov and 
P. Baxevanis, PRAB, 2019



Analysis of Chicane-based CeC: 
Single Ion Approach I
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Consider the following initial distribution of electrons (Spatially Beercan and 
Gaussian energy distribution)

After the modulation (kicked by a single ion) and the buncher, the distribution 
function is

The line density modulation at the exit of the buncher is thus

© V.N. Litvinenko
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For the specific form of initial distribution, the integral can be reduced to

The electric field due to the density modulation can be 
calculated as follows (disc charge model)

Analysis of Chicane-based CeC: 
Single Ion Approach II © V.N. Litvinenko



0.1a mm=
The following shows an example of our analysis:

1peakI A= 10kickL m=

mod 10L m= 4
, 10eds

-= 1.5D mm=

4
, 6 10ionds

-= ×

275pE GeV=

Analysis of Chicane-based CeC: 
Single Ion Approach III



Circulating Ion Beam Evolution in the 
Presence of CeC

Ion bunch

CeC

We take two approach to predict the evolution of the ion bunch in the presence of CeC:

• Solving 1-D Fokker-Planck equation (analytical tool);
o Very fast (a few minutes on a pc)
o With limitations (currently work with linear cooling force, no beam losses from 

RF bucket, static diffusion coefficient…)

• Macro-particle tracking (simulation tool).
o Time consuming (a few hours on a pc)
o More realistic and versatile



How to evaluate CeC: the original recipe
Free Electron Lasers and High-energy Electron Cooling,

V. N. Litvinenko, Ya. S. Derbenev, 29th International Free Electron Laser Conference, Novosibirsk, Russia, 
August 27-31, 2007  

• Linear response of electron beam on perturbations – no saturation, 
superposition principle
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© V.N. Litvinenko

• Energy and momentum kick received by an ion in the cooling section

Field induced by an ion

Field induced by an electron

Field induced by all ions 
and electrons

• Linear response of electron beam on perturbations – no saturation, 
superposition principle

• Evaluation of hadron distribution function using Fokker-Plank equation with 
both damping and diffusion terms

• Cooling transversely using coupling with longitudinal degrees of freedom
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Analytical tools for predicting the influences of CeC
to a circulating ion beam I

• Evolution of the longitudinal phase space density of the ion
bunch, after averaging over the synchrotron oscillation
phase, follows the 1-D Fokker-Planck equation

• In the limit of , an analytical solution can be derived
for the following form of cooling profile and initial condition,

as

is called product logarithm
function and can be directly
evaluated in Mathematica.
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Analytical tools for predicting the influences 
of CeC to a circulating ion beam II

• The longitudinal line density of ion 
bunch is given by

• For , the 1-D Fokker-Planck
equation can be solved numerically
with arbitrary form of cooling rate
and initial ion distribution.

• The analytical studies reveals the
fact that the central blips due to
local cooling tends to be smeared
out by diffusive kicks from IBS and
more significantly, from incoherent
kicks induced by neighbor ions.

( ) ( )2 2, ,ion t z F z t dr d d
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Simulation tools for predicting the influences 
of CeC to a circulating ion beam I

Energy kicks from CeC is , ,j coh j inc jE E ED = D + D

( ), 0sincoh j i p jE Z eE l k D dD º - ×Coherent kick induced by the ion itself
Incoherent kick induced by the neighbor ions (using the Gaussian profile as 
obtained by quadratic expansion of FEL eigenvalues)
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Since there is no correlation between any successive incoherent kicks, one can
use a random kick to represent the incoherent kicks
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For a random number uniformly 
distributed between -1 and 1

, 56     : longitudinal location of the  ion;     : RMS width of the wave-packet;    : .th
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Simulation tools for predicting the influences 
of CeC to a circulating ion beam II

• Assuming the ion density does not vary significantly over 
the width of the wave-packet

• The one-turn energy kick due to CeC is
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Diffusive kick induced by neighbor 
electrons, i.e. electrons’ shot noise



Comparison with Macro-particle Tracking

Some limitations of the Fokker-Planck solver:
1. The Fokker-Planck solver assumes constant cooling rate (linear cooling force) inside electron 

bunch while macro-particle tracking assume sinusoidal cooling force;
2. The Fokker-Planck solver does not account for particle leakage from rf bucket or other rf-

related effects.
3. The diffusion coefficients applied in Fokker-Planck equation does not change with time.
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How to cool transversely : a simple case

44Can use a non-achromatic transport (time of flight dependence) 
or transverse beam separationto couple longitudinal and transverse cooling 
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Distribution of cooling between longitudinal and 
transverse degrees of freedom – linearized kick

r = 0 r = 0.5

r = -0.5 r = -1

r = -1.5

δ Eh
Eo

= const −ζ1x −ζ6
Eh − Eo
Eo

; r = Dζ1 /ζ6
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Δx = 0.75σx
zero energy kick at 

0.4σδ

Wrong  sign of displacement  
Δx = -0.75σx

x/σx

x/σx

δ/σδ

δ/σδ

Excessive shifting of zero-kick point to δ = 0.6σδ

Kick

δ

Kick

δ

Kick

δ
x/σx

x/σx δ/σδ

δ/σδ

Distribution of cooling between longitudinal and 
transverse degrees of freedom – real kick
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Summary
• Theoretical tools and start-to-end simulations for FEL-

based CeC have been developed in the past few year;
• We are currently working on improving theoretical model 

for PCA-based CeC as well as conducting start-to-end 3-
D simulations with code SPACE; 

• Preliminary estimate of eRHIC cooling shows that  
‘electron painting’ may be needed to cool ions with large 
synchrotron amplitude with PCA-based CeC;

• We are also working on PCA schemes with central 
solenoid which could reduce the peak current required to 
cool eRHIC proton beam.

• We show that transverse cooling can be achieved by 
displacing electron beam w.r.t the ion beam.



Backup slides



Future works
• Since PCA-based CeC is planned to be tested in the next two years, it is our main focus to complete 

and improve the existing model and simulations:
– Theoretical studies

• Develop PCA model for electron bunch  with initial energy chirp and accelerator;
• Develop 3-D model for PCA (Plasma oscillation with finite transverse size, transverse 

mode…);
• Investigate how transverse-longitudinal coupling affects PCA; 
• Exploring how cooling performance scales with various beam/accelerator parameters and 

searching for optimal settings; 
• Continue works on evaluating transverse cooling;
• Study PCA process with central solenoid (important for reducing requirements on electron 

beam for cooling EIC);
– 3-D simulation with SPACE

• Start-to-end simulation for PCA-based CeC test at RHIC;
• Generating single-pass kick as a function of ion’s 6-D coordinate;
• Sensitivity studies and optimizations for the PCA-based CeC test at RHIC;
• Incorporating bunch compression and acceleration into SPACE;
• Simulating PCA process with central solenoids.

• For predicting the evolution of ion beam with cooling, further improvements include solving Fokker-
Planck equation for non-linear cooling force and including transverse cooling into ion tracking code.



3D simulation of PCA



Approach Used in PRL 111, 084802 (2013) by D. Ratner

mL b>>

mL b<<

‘Disc’ model

© D. Ratner



Debye shielding in an uniform electron 
plasma with anisotropic velocity distribution
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The system can be 
described by linearized 
Vlasov-Maxwell equations

In 3-D Fourier domain, the
equations reduces to a
non-homogeneous 2nd

ODE

The solution for zero initial
density and velocity modulation
in Fourier domain can be found

By inverse Fourier transformation,
we obtain the density modulation in
space domain



1-D integral for energy modulation
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Start-to-end simulation for the single pass I

1. At the entrance of the FEL, create macro-particles for the whole 
electron beam with proper shot noise. The 6-D distribution of the 
particles is determined by the beam dynamic simulation.

2. At the entrance of modulator, create one slice of macro-particles 
(with duration of one optical wavelength) with proper shot noise 
and 6-D distribution.

3. Run modulator simulation with the slice created in step 2. Due to 
periodic condition, the shot noise of the slice will stay correct.

4. Replace the corresponding slice created from step 1 with that 
output from step 3.

5. Run Genesis simulation. (Need to add macro-particles with 
negative energy to make it work as Genesis require each slice has 
the same number of macro-particles).

6. Take a proper portion of macro-particles output from GENESIS and 
import them into SPACE for kicker simulation.

7. Repeat step 1-6 but without the ion. The difference of step 6 and 
step 7 provides the single-pass coherent kick solely due to the ion.

Steps for single pass start-to-end simulation:



Analytical tools for FEL amplifier IV
• By requiring the relative density variation is smaller than 

one, we derived the upper limit of the FEL gain for the 
amplifier to work in the linear regime

δ n̂ / n0 max <1⇒ g max <
λo

2
Ie
ecLc

⇒ gmax ~ 72 ⋅
Ie[A]⋅λo[µm]

Mc

= 14.1

• γ=7460.52
• Peak current: 30 A
• Norm emittance 1 mm mrad
• RMS energy spread 2.5e-5
• λw=10 cm
• aw = 10
• λo=90.73 nm 
• Mc = 70.6
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3D Genesis simulation shows
that the maximal gain in
bunching factor is 18.7,
which agrees with our
estimation.

(© Y. Jing, with code GENESIS)



The FEL looks not saturated
Amplification of shot 
noise

Transverse beam size



Field Reduction due to Finite Transverse  Modulation 
Size
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Background electron line density 
at the entrance of the kicker



• Dynamic equation in Kicker is very similar to that in the modulator except 
the initial modulation in 6D phase space dominates the process. For κ-2 
velocity distribution, the electron density perturbation is determined by:

with                                                                        and

The solution of this inhomogeneous 2nd order differential equation reads   
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Analytical Tools for Kicker I



Simulation Tools for the Modulation Process II

– Simulation results for a continuous focusing channel (Beam 
is matched and transverse beam size does not vary.)

• Modulation is less effective for an
off-centered ion. For an ion sitting
at 1σ away from transverse
electron beam center, the
longitudinal density modulation
reduces by ~40%.

• The transverse density
modulation profile induced by an
off-centered ion is significantly
different from that induced by an
ion at beam center

(© J. Ma, with code SPACE)



Simulation tools for FEL amplifier
• We use GENESIS 1.3 to simulate the amplification process in

the FEL amplifier.
• Following the approach of perturbative trajectories, we run

two sets of FEL simulation: one with shot noise plus
modulation induced by the ion and the other one with shot
noise only. The wave-packet due to the ion is extracted from
the difference of the two sets of simulation. The plots are
results for 20 MeV electrons.



Simulation tools for kicker
• The macro-particles from GENESIS simulation are imported 

into SPACE for the kicker simulation.

The evolution of the wave-
packet shows similar behavior
as that obtained from analytical
model, i.e. the wave-packet
amplitude increases initially
and then starts to decrease.

(© J. Ma, with code SPACE)

Background line density is 2e6/μm.



Start-to-end simulation for the single pass

• One example of start-to-end simulation (to cool 40 GeV Au)
Modulator Amplifier

Kicker

(© J. Ma, with code SPACE and GENESIS)



How to evaluate CeC: the original recipe
Free Electron Lasers and High-energy Electron Cooling,

V. N. Litvinenko, Ya. S. Derbenev, 29th International Free Electron Laser Conference, Novosibirsk, Russia, 
August 27-31, 2007  

• Linear response of electron beam on perturbations – no saturation, 
superposition principle

• Evaluation of hadron distribution function using Fokker-Plank equation 
with both damping and diffusion terms

• Cooling transversely using coupling with longitudinal degrees of 
freedom

δ
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How to evaluate CeC: the original recipe
Free Electron Lasers and High-energy Electron Cooling,

V. N. Litvinenko, Ya. S. Derbenev, 29th International Free Electron Laser Conference, Novosibirsk, Russia, 
August 27-31, 2007  

• Linear response of electron beam on perturbations – no saturation, 
superposition principle

• Evaluation of hadron distribution function using Fokker-Plank equation with 
both damping and diffusion terms

• Cooling transversely using coupling with longitudinal degrees of freedom
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